Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex.

نویسندگان

  • M A Castro-Alamancos
  • J Borrel
چکیده

Functional recovery after brain damage has been described frequently and different mechanisms have been proposed to account for the observed recovery. One possible mechanism involves the capacity of one part of the brain to take over the function of another. A possible area for this to take place is in the cerebral cortex, where a variety of reorganizational processes have been described after different manipulations. We show in the present study that the forelimb force and response capacity of the rat, which becomes highly impaired after the bilateral ablation of the forelimb primary motor cortex, is recovered when the animals receive an electrical stimulation in the ventral tegmental nucleus contingent to each forelimb response in the task. Microstimulation mapping of the cortical areas adjacent to the forelimb primary motor cortex revealed the appearance of an area located caudolaterally to the forelimb primary motor cortex, where forelimb movements could be evoked in recovered animals but to a lesser extent in non-recovered animals. A positive and significant correlation was observed between the size of the reorganized forelimb area and the behavioral performance of the animals. Ablation of the forelimb reorganized area in recovered animals reinstated the forelimb behavioral impairment, while the same lesion in normal animals had no effect on the behavioral performance. The results indicate that recovery after bilateral forelimb primary motor cortex ablation may be due to the organization of specific adjacent areas in the cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional reorganization of the rat motor cortex following motor skill learning.

Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 80: 3321-3325, 1998. Adult rats were allocated to either a skilled or unskilled reaching condition (SRC and URC, respectively). SRC animals were trained for 10 days on a skilled reaching task while URC animals were trained on a simple bar pressing task. After training, microelectrode stimulation w...

متن کامل

Forelimb training drives transient map reorganization in ipsilateral motor cortex.

Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex map...

متن کامل

Limits of reorganization in cortical circuits.

the earliest experimental enquiries into the function of the cerebral cortex, there has been a notion of plasticity of cortical representation patterns. Many early ideas related both to representation pattern and plasticity emerged from mapping studies of the motor cortex. One practical reason for this attention towards motor cortex was the ability to investigate its functional organization usi...

متن کامل

Displacement of sensory maps and disorganization of motor cortex after targeted stroke in mice.

BACKGROUND AND PURPOSE Recovery from stroke is hypothesized to involve the reorganization of surviving cortical areas. To study the functional organization of sensorimotor cortex at multiple time points before and after stroke, we performed longitudinal light-based motor mapping of transgenic mice expressing light-sensitive channelrhodopsin-2 in layer 5 cortical neurons. METHODS Pulses of lig...

متن کامل

The Effect of Lesion Size on the Organization of the Ipsilesional and Contralesional Motor Cortex

Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 68 3  شماره 

صفحات  -

تاریخ انتشار 1995